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The mathematics of a-quantile options:
an introduction
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General definition of the a-quantile

Let X = (X}):>0 be a stochastic process; this can be multidimensional - e.g.
a basket of equities. We fix the following parameters:

= A time of maturity 7" > 0 at which we will evaluate the payoff;
= A constant vector v in R? - with the same dimension as the number of

assets in the price process;
= The quantile level a € (0, 1).

We thus define the hyperplane a-quantile on X with the given parameters

(T, 7, a) as:
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That is: equation (1) is the smallest real value y such that the asset price
process X has passed a proportion « of the total time up to maturity T in
the (closed) lower half-space region {z € R : v - z < y}.

An example on a Black-Scholes log-price path

Let us consider the example of the Black-Scholes model for a single asset S
under the risk-neutral dynamics with rate r = /2 for simplicity:

2
dXt — %Xtdt + O'XtthQ, t <7

so that dln X; = athQ. The distribution of the a-quantile of the log-price
process In(X /Xy) is known (see the references) and we can derive the fol-
lowing closed-form result for the ()-expectation of the a-quantile with v = 1:
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In particular, equation (2):

= Expresses the average smallest value under which the log-price passes at
least &T" time In absence of arbitrage. The equivalent expectation under
the physical measure P would be a risk management tool.

= Depends linearly on the volatility parameter o > 0 and nonlinearly on the
quantile level o (and the maturity time T') - as is shown in Figure 1.

A simulation of a log-price path and two corresponding a-quantiles for differ-
ent levels are shown in Figure 2.
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Figure 1. Q-expectation of the a-quantile (eq. (2) on the Black-Scholes log-price for T = 1.
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Figure 2. a-quantiles of a risk-neutral path of the Black-Scholes log-price for T = 1.

Mathematical properties of the a-quantile
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The a-quantile of a process X as defined in equation (1) can be considered
as a path functional acting on the space of R?-valued cadlag functions, which
is called the Skorokhod space: Dga|0, 00) 2 x +— M7 ().

This is because we generally consider asset price models which have at least
cadlag paths, that is X : QO — Dra|0, 00), €.g. jump-diffusions or more general
semimartingales, or just diffusions like the Black-Scholes model which have
continuous paths.

In particular, the hyperplane a-quantile path functional:
" |t Is a measurable function, and for any T' > 0 and x € Dga|0, o0) fixed it is

nondecreasing and left-continuous in the argument «a, with at most
countable discontinuities;

= For a quantile level a fixed, the functional is continuous over the
Skorokhod space atall z s.t. @ ¢ {a : Mrp(x) < Mrp+(x)} - that is we
have an explicit continuity set over its domain.

From this we can prove the following theorem.

Convergence in distribution of the a-quantile

We may want to know if - for example - given a sequence of simulation
schemes (X"),en that converges to the true asset price process X (in the
sense of distributions) we also have the convergence of the a-quantile.

f, alternatively:

* Forany e > 0we have P(Mr3(X) > Mro(X)+¢e) = 0as 8| a;
= X has a.s. continuous paths;

then Mro(X") =% My ,(X). This is a continuous mapping theorem.

The first hitting time of 1/, ,(X)

In fact, the following is also true:

= We can define well the first hitting time - the time at which X has hit
its own a-quantile before time T (it is a nontrivial example of a random
time which is not a stopping time!) and in the particular case of a
R-valued continuous-path process X we denote it with

T (X) = inf{t < T : Xy = Mro(X)}
= \WWe can then consider the a-quantile and this random time jointly and

we can find an explicit joint continuity set.

By using deep results of the properties of Brownian motion, we can prove
that if X™ converges to a (scaled) R%-Brownian motion, then the a-quantile
and its random time converge jointly in distribution.

References: some literature review on the topic

= The a-quantile can be used to construct path-dependent option payoffs -
that is exotic derivatives with a-quantile underlying. The no-arbitrage
pricing of derivatives such as a-quantile call options

o~ T(I—1) EQ[(YOGMT,@(X) — K)".%], Yy>0

is explored e.g. in (Dassios, A.; Ann. Appl. Probab., 1995) by also deriving
explicitly the Brownian distribution of the a-quantile; see also (Yor, M.; J.
Appl. Probab., 1995) and (Akahori, J.; Ann. Appl. Probab., 1995)

= The joint density of the Brownian a-quantile and its first and last hitting
times is derived in (Dassios, A.; Bernoulli, 2005):; this result can be used to
price exotic options depending jointly on all these random quantities.

* The Introduction of the a-quantile of stochastic processes dates back to
(Miura, R.; Hitotsubashi Journal of Commerce and Management, 1992).

= Results on the a-quantiles of processes with exchangeable increments are
explored in (Chaumont, L.; J. Lond. Math. Soc., 1999).
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