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General definition of the α-quantile

Let X = (Xt)t≥0 be a stochastic process; this can be multidimensional - e.g.

a basket of equities. We fix the following parameters:

A time of maturity T > 0 at which we will evaluate the payoff;

A constant vector γ in Rd - with the same dimension as the number of

assets in the price process;

The quantile level α ∈ (0, 1).

We thus define the hyperplane α-quantile on X with the given parameters

(T, γ, α) as:

MT,α(X) = inf
{

y : 1
T

∫ T

0
1{z:γ·z≤y}(Xs)ds ≥ α

}
(1)

That is: equation (1) is the smallest real value y such that the asset price

process X has passed a proportion α of the total time up to maturity T in

the (closed) lower half-space region {z ∈ Rd : γ · z ≤ y}.

An example on a Black-Scholes log-price path

Let us consider the example of the Black-Scholes model for a single asset S
under the risk-neutral dynamics with rate r = σ2/2 for simplicity:

dXt = σ2

2
Xtdt + σXtdW Q

t , t ≤ T

so that d ln Xt = σdW Q
t . The distribution of the α-quantile of the log-price

process ln(X./X0) is known (see the references) and we can derive the fol-

lowing closed-form result for the Q-expectation of the α-quantile with γ = 1:

EQ

[
MT,α

(
ln X.

X0

)]
= σ

√
2αT −

√
2(1 − α)T√
π

(2)

In particular, equation (2):

Expresses the average smallest value under which the log-price passes at

least αT time in absence of arbitrage. The equivalent expectation under

the physical measure P would be a risk management tool.

Depends linearly on the volatility parameter σ > 0 and nonlinearly on the

quantile level α (and the maturity time T ) - as is shown in Figure 1.

A simulation of a log-price path and two corresponding α-quantiles for differ-
ent levels are shown in Figure 2.

Figure 1. Q-expectation of the α-quantile (eq. (2) on the Black-Scholes log-price for T = 1.

Figure 2. α-quantiles of a risk-neutral path of the Black-Scholes log-price for T = 1.

Mathematical properties of the α-quantile

The α-quantile of a process X as defined in equation (1) can be considered

as a path functional acting on the space ofRd-valued càdlàg functions, which

is called the Skorokhod space: DRd[0, ∞) 3 x 7→ MT,α(x).
This is because we generally consider asset price models which have at least

càdlàg paths, that is X : Ω → DRd[0, ∞), e.g. jump-diffusions or more general

semimartingales, or just diffusions like the Black-Scholes model which have

continuous paths.

In particular, the hyperplane α-quantile path functional:

It is a measurable function, and for any T > 0 and x ∈ DRd[0, ∞) fixed it is

nondecreasing and left-continuous in the argument α, with at most

countable discontinuities;

For a quantile level α fixed, the functional is continuous over the

Skorokhod space at all x s.t. α /∈ {α : MT,α(x) < MT,α+(x)} - that is we

have an explicit continuity set over its domain.

From this we can prove the following theorem.

Convergence in distribution of the α-quantile

We may want to know if - for example - given a sequence of simulation

schemes (Xn)n∈N that converges to the true asset price process X (in the

sense of distributions) we also have the convergence of the α-quantile.

If, alternatively:

For any ε > 0 we have P (MT,β(X) > MT,α(X) + ε) → 0 as β ↓ α;

X has a.s. continuous paths;

then MT,α(Xn) →d MT,α(X). This is a continuous mapping theorem.

The first hitting time of MT,α(X)

In fact, the following is also true:

We can define well the first hitting time - the time at which X has hit

its own α-quantile before time T (it is a nontrivial example of a random

time which is not a stopping time!) and in the particular case of a

R-valued continuous-path process X we denote it with

τMT,α
(X) = inf{t ≤ T : Xt = MT,α(X)}

We can then consider the α-quantile and this random time jointly and

we can find an explicit joint continuity set.

By using deep results of the properties of Brownian motion, we can prove

that if Xn converges to a (scaled) Rd-Brownian motion, then the α-quantile
and its random time converge jointly in distribution.

References: some literature review on the topic

The α-quantile can be used to construct path-dependent option payoffs -

that is exotic derivatives with α-quantile underlying. The no-arbitrage

pricing of derivatives such as α-quantile call options

e−r(T−t)EQ[(Y0e
MT,α(X) − K)+|Ft], Y0 > 0

is explored e.g. in (Dassios, A.; Ann. Appl. Probab., 1995) by also deriving

explicitly the Brownian distribution of the α-quantile; see also (Yor, M.; J.

Appl. Probab., 1995) and (Akahori, J.; Ann. Appl. Probab., 1995)

The joint density of the Brownian α-quantile and its first and last hitting

times is derived in (Dassios, A.; Bernoulli, 2005); this result can be used to

price exotic options depending jointly on all these random quantities.

The introduction of the α-quantile of stochastic processes dates back to

(Miura, R.; Hitotsubashi Journal of Commerce and Management, 1992).

Results on the α-quantiles of processes with exchangeable increments are

explored in (Chaumont, L.; J. Lond. Math. Soc., 1999).

https://www.lse.ac.uk/statistics/people/pietro-maria-sparago World Bachelier Congress 2024, Rio de Janeiro p.sparago@lse.ac.uk

https://www.lse.ac.uk/statistics/people/pietro-maria-sparago
mailto:p.sparago@lse.ac.uk

